

2020 ADULT AND PEDIATRIC SARCOMA: CONNECTIVE TISSUE, SOFT TISSUE, BONE, SOLID ORGANS, DIAGNOSIS, CLASSIFICATION, STAGING AND TREATMENT

2020-2021 FCDS ANNUAL EDUCATIONAL CONFERENCE SERIES

STEVEN PEACE, CTR

OCTOBER 29, 2020

WHO Classification of Tumours + 5th Edition

Soft Tissue and Bone Tumours

Alexan

CDC & FLORIDA DOH ATTRIBUTION

"Funding for this conference was made possible (in part) by the Centers for Disease Control and Prevention. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the US Government."

FCDS would also like to acknowledge the Florida Department of Health for its support of the Florida Cancer Data System, including the development, printing and distribution of materials for the 2020 FCDS Annual Conference and the 2020-2021 FCDS Webcast Series under state contract CODJU. The findings and conclusions in this series are those of the author(s) and do not necessarily represent the official position of the Florida Department of Health.

FLCCSC LMS – CEU QUIZ –FCDS IDEA

- Attendees must take and pass a 3-5 question CEU Quiz to get CEUs
- CEU Awards are Restricted to Attendees with a FLccSC LMS Account
- The CEU Quiz will be posted to FLccSC 1-2 hours after the webcast ends
- Only registered FLccSC Users will be given access to the CEU Quiz Florida attendees must have a Florida FLccSC Account to take the Quiz South Carolina attendees must have a South Carolina FLccSC Account New FLccSC States will follow similar instructions for the CEU Quiz
- Attendees can attend any of the live webcasts without receiving CEUs
- Recorded Sessions are also available for non-FLccSC Users No CEUs

2020-2021 FCDS WEBINAR SERIES

Dear Program Host,

Thank you for your request for "Program Recognition" to support continuing education hours for the CTR Credential. Review of your applications by the NCRA Program Recognition Committee has determined the following.

Program Title	Program #	CE Hours Awarded	Category A Hours
Sarcoma - Pediatric and Adult Bone and Soft Tissue, GYN, Ewing Sarcoma/PNET, Other Sites	2020-140	2	2
Skin Cancers - Melanoma, Merkel cell, GYN sites, T-cell and B-cell Lymphoma, Kaposi Sarcoma, Sebaceous Gland Carcinoma, Dermatofibrosarcoma Protuberans	2020-141	2	2
Oral Cavity	2020-142	2	2
Pediatric Cancers	2020-143	2	2
Upper GI Tract - Esophagus, Stomach, Small Intestine, Pancreas, Liver and Biliary Tract	2020-144	2	2

Please ensure this information is listed on the formal program document you provide your

PRESENTATION OUTLINE

- What is Connective Tissue?
- Is Bone and Cartilage Connective Tissue?
- Are muscles and tendons Connective Tissue?
- Is there Connective Tissue in the Nervous System?

5

- Introduction to Sarcoma Incidence/Mortality Causes/Risk Factors Signs/Symptoms WHO Classification
- Instructions for Coding Primary Site for Sarcoma Cases
- Anatomy/Physiology/Diagnosis/Classification/Molecular Genetics/Staging/Treatment
 - Soft Tissue and Connective Tissue broad category with sarcomas of fat, blood vessels, veins and arteries, connective tissue, fascia, fibrous tissue, muscle, subcutaneous tissue, tendons, retroperitoneum, etc). C49.0-C49.9
 - Long and Short Bones, Cartilage C40.0-C41.9
 - Muscle (including skeletal muscle and fascia) C49.0-C49.9 descriptions often mixed in soft tissue discussions
 - GYN Sarcoma C54.1 or C54.2
 - GIST and Other Stromal Tumors stomach or other stroma such as adnexa or endometrial stroma
 - Treatment Options New Chemotherapy Agents and Limb Salvage Procedures
- Questions

•

- NCI Definition of Connective Tissue is rather broad and includes: <u>Tissue that supports</u>, protects, and gives structure to other tissues and organs in the body. Connective tissue also stores fat, helps move nutrients and other substances between tissues and organs, and helps repair damaged tissue. Connective tissue is made up of <u>cells</u>, fibers, and a gellike substance. Types of connective tissue include <u>bone</u>, cartilage, tendons, ligaments, fat, collagen, fibrous tissue, adipose tissue, blood, lymphatic tissue, and elastic tissues.
- The Function of Connective Tissue is equally broad: Connective tissue is the most abundant and widely distributed of the primary tissues. ... Major functions of connective tissue include: 1) binding and supporting, 2) protecting, 3) insulating, 4) storing reserve fuel, and 5) transporting substances within the body. Connective tissues can have various levels of vascularity.
- And Another Definition of Connective Tissue: A material made up of fibers forming a framework and support structure for body tissues and organs. Connective tissue surrounds many organs. Cartilage and bone are specialized forms of connective tissue. <u>All connective tissue is derived from mesoderm, the middle germ cell layer in the embryo.</u>

Connective tissue

www.onlinebiologynotes.com

https://courses.lumenlearning.com/ap1x94x1/chapter/examining-connective-tissue-under-the-microscope/

	Types of connective tissue proper					
	Loose connective tissue proper			Dense connective tissue proper		
Constituents	Areolar Reticular Ad connective tissue		Adipose	RegularIrregulardensedenseconnectiveconnectivetissuetissue		Elastic dense connective tissue
Cells	Fibroblasts, w/some macrophages, other white blood cells	Fibroblasts, w/many white blood cells	Adipocytes, w/some macrophages, other white blood cells.	Fibroblasts, w/ some macrophages, other white blood cells	Fibroblasts, w/ some macrophages, other white blood cells	Fibroblasts, w/ some macrophages, other white blood cells
Protein fibers	Collagen, elastic	Reticular	Collagen, some reticular	Thick collagen fibers, in parallel	Thick collagen fibers, no consistent arrangement	Elastic mainly, some collagen
Ground substance	Jelly-like, abundant	Jelly-like abundant	Smaller amounts due to abundant cells	Smaller amounts due to abundant fibers	Smaller amounts due to abundant fibers	Smaller amounts due to abundant fibers
Locations	Under epithelia of skin, mucous membranes, capillaries, organs	Spleen, lymph nodes, bone marrow	Under skin, surrounding organs, between muscle fibers, in pericardium.	Tendons, ligaments, aponeuroses	Capsules around joints and organs, dermis of skin	Walls of large arteries, walls of bronchial tubes, vertebral ligaments

https://courses.lumenlearning.com/ap1x94x1/chapter/examining-connective-tissue-under-the-microscope/

IS BONE AND CARTILAGE CONNECTIVE TISSUE?

https://courses.lumenlearning.com/ap1x94x1/chapter/examining-connective-tissue-under-the-microscope/

ARE MUSCLES AND TENDONS CONNECTIVE TISSUE?

11

https://courses.lumenlearning.com/ap1x94x1/chapter/examining-connective-tissue-under-the-microscope/

IS NERVOUS TISSUE CONNECTIVE TISSUE?

https://courses.lumenlearning.com/ap1x94x1/chapter/examining-connective-tissue-under-the-microscope/

SUMMARY - WHAT IS CONNECTIVE TISSUE

- Bone and Cartilage long bones and short bones
- Synovia Joints and Fluids that Lubricate Joints
- Muscle Cardiac and Smooth Muscle
- Muscle Skeletal Muscle
- Fatty Tissue
- Fibrous Tissue
- Fascia and Mesentery
- Soft Tissue, NOS
- Blood vessel Veins and Arteries
- Tendons and Ligaments and Bursa
- Subcutaneous Tissue 'surface' sarcomas
- Connective tissue Fascia and Adipose Tissue
- Neuron Protective Tissues Astrocytes, Oligodendrocytes, Schwann Cells, Migroglia, Ependymal Cells
- BUT but not neurons themselves only the cells that protect the neurons
- Retroperitoneum/Peritoneum NOS

Most of tissues are found everywhere in the body.

If the sarcoma involves a solid organ – code primary site to that solid organ

Otherwise, code the primary site to the bone or connective tissue site that describes the anatomic location of the connective tissue, regardless of type of connective tissue

2020 INCIDENCE & MORTALITY ESTIMATES

Figure 3. Leading Sites of New Cancer Cases and Deaths – 2020 Estimates							
	Male				Female		
	Prostate	191,930	21%		Breast	276,480	30%
	Lung & bronchus	116,300	13%		Lung & bronchus	112,520	12%
ses	Colon & rectum	78,300	9%		Colon & rectum	69,650	8%
ĕ	Urinary bladder	62,100	7%		Uterine corpus	65,620	7%
N.	Melanoma of the skin	60,190	7%		Thyroid	40,170	4%
ž	Kidney & renal pelvis	45,520	5%		Melanoma of the skin	40,160	4%
ted	Non-Hodgkin lymphoma	42,380	5%		Non-Hodgkin lymphoma	34,860	4%
ma	Oral cavity & pharynx	38,380	4%		Kidney & renal pelvis	28,230	3%
its	Leukemia	35,470	4%		Pancreas	27,200	3%
	Pancreas	30,400	3%		Leukemia	25,060	3%
	All sites	893,660			All sites	912,930	
Male				Female			
	Lung & bronchus	72,500	23%		Lung & bronchus	63,220	22%
	Prostate	33,330	10%		Breast	42,170	15%
	Colon & rectum	28,630	9%		Colon & rectum	24,570	9%
th	Pancreas	24,640	8%		Pancreas	22,410	8%
ő	Liver & intrahepatic bile duct	20,020	6%		Ovary	13,940	5%
p	Leukemia	13,420	4%		Uterine corpus	12,590	4%
ate	Esophagus	13,100	4%		Liver & intrahepatic bile duct	10,140	4%
tim	Urinary bladder	13,050	4%		Leukemia	9,680	3%
E	Non-Hodgkin lymphoma	11,460	4%		Non-Hodgkin lymphoma	8,480	3%
	Brain & other nervous system	10,190	3%		Brain & other nervous system	7,830	3%
	All sites	321,160			All sites	285,360	

Estimates are rounded to the nearest 10, and cases exclude basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder. Estimates do not include Puerto Rico or other US territories. Ranking is based on modeled projections and may differ from the most recent observed data.

@2020, American Cancer Society, Inc., Surveillance Research

2020 Cancer Facts and Figures – American Cancer Society

2020 INCIDENCE & MORTALITY ESTIMATES

- Miscellaneous
- Aveolar soft part sarcoma
- Osseous\chondromatous
- Blood vessel tumor
- Synovial tumor
- Leiomyosarcoma
- Liposarcoma
- Rhabdoid tumor
- PNET
- Kaposi sarcoma
- Nerve sheath tumor
- Fibrohistiocytic tumor
- Fibroblastic tumor
- Rhabdomyosarcoma

NCI PDQ Childhood Soft Tissue Sarcoma Treatment

Bone tumor frequency according to age

17

Bone Tumor Staging Systems – Dr Abdullah K Ghafour and Dr Ali Abdulnabi Alwan

- Angiosarcoma
- Kaposi Sarcoma
- Fibrous Tumors
- Soft Tissue Tumors
- Fatty Tumors (Lipomatous)
- Chondroid Tumors (Bone and Cartilage)
- Peripheral Nerve Sheath Tumors
- Rhabdomyosarcoma
- Schwannoma
- Spindle Cell Tumors
- Myofibroblastic Tumors
- Fibromyxoid Tumors
- Hemangioma
- Lymphangioma
- Epithelioid Sarcoma
- Extraskeletal Chroncdrosarcoma
- Mixed Tumors

CAUSES AND RISK FACTORS

- The etiology of most benign and malignant tumours of soft tissue is unknown. In rare cases (< 10%), genetic and environmental factors, irradiation, viral infections, and immunodeficiency have been found to be associated with the development of usually malignant soft tissue tumours.
- There are also isolated reports of <u>sarcomas arising in scar tissue, at</u> <u>fracture sites</u>, and close to surgical implants.
- Some angiosarcomas arise in <u>chronic lymphoedema</u>. However, the large majority of soft tissue sarcomas seem to arise de novo, without an apparent causative factor.
- Multistage tumorigenesis sequences with gradual accumulation of genetic alterations and an increasing histological degree of malignancy have not yet been clearly identified in most tumours of soft tissue.
- Four main types of etiological agents have been implicated in the literature: chemical carcinogens, radiation, viral infection and immunodeficiency, and genetic susceptibility.

RISK FACTORS for adult soft tissue sarcomas include:

Being exposed

to certain

chemicals.

Thorotrast (thorium

such as

dioxide),

or arsenic

vinyl chloride,

 Past treatment with radiation therapy for certain cancers, including breast cancer, or childhood cancers • Having swelling (lymphedema) in the arms or legs for a long period of time

SIGNS AND SYMPTOMS

Table 1. Distribution of Soft-Tissue Sarcoma.*			
Site	Incidence		
	%		
Lower limb and girdle	40		
Upper limb and girdle	20		
Retroperitoneal and intraperitoneal sites†	20		
Trunk	10		
Head and neck	10		

* Percentages are approximate. † These sites include gastrointestinal stromal tumors.

SYMPTOMS OF **EWING'S SARCOMA**

Signs and symptoms of bone cancer

Chondrosarcoma

Increasing pain • A swelling or palpable mass • Fracture due to weakened bone

Ewing Sarcoma

Pain, swelling, or tenderness • Bone pain • **Unexplained tiredness**

Osteosarcoma

Swelling near a bone • Bone or joint pain • Bone injury or break for no clear reason

WHO Classification of Turnours • 5th Edition

Soft Tissue and Bone Tumours

Edited by the WHO Classification of Tumours Editorial Board

(d) 324.222

Sub-types of soft tissue sarcoma (not all are listed here)

Peripheral nerve tumor Malignant peripheral nerve sheath tumor (MPNST)

Fat tissue tumor

Liposarcoma

Joint tissue tumors Chondrosarcoma, synovial sarcoma

© Mechanisms in Medicine Inc.

Blood and lymph vessels tumors

Angiosarcomas

Digestive system tumors

Gastrointestinal stromal tumors (GIST)

Muscle and fibrous tissue tumors

Rhabdomyosarcoma, fibrosarcoma

www.YouAndSarcoma.com

https://tumourclassification.iarc.who.int/welcome/

- The book contains major modifications to the previous one through the addition of new chapters, inclusion of new entities as well as deletion and reclassification of others.
- It also demonstrated minor changes such as renaming of some tumours and updates of molecular and genetic findings.
- 159 authors from 24 different countries contributed to this book
- Includes the addition of three new chapters (gastrointestinal stromal tumours, nerve sheath tumours and undifferentiated high-grade pleomorphic sarcoma of bone).
- Incorporates more cytogenetic and molecular genetics data than previous editions
- 2 basic new terms have been promulgated: "Locally Aggressive" and "Rarely Metastasizing"
- This book will certainly serve as the basis for the classification of soft tissue and bone tumors for the next decade

International Agency for Research on Cancer

A Features Preview Pricing Contact

WHO Classification of Tumours Online

For the first time, WHO Classification of Tumours Online presents the authoritative content of the renowned classification series in a convenient digital format. Now combining the **ten** most recent volumes of the series with whole slide images in a searchable format, WHO Classification of Tumours Online is indispensable for pathologists and cancer specialists worldwide. New volumes will be added regularly, ensuring immediate access to the latest content. Currently includes Female Genital Organs 5th ed 2020; Soft Tissue and Bone 5th ed 2020; Breast 5th ed 2019; Digestive 5th ed 2019; Skin 4th ed 2018; Eye 4th ed 2018; Endocrine 4th ed 2017; Head and Neck 4th ed 2017; Lymphoid 4th ed rev 2017; Central Nervous System 4th ed rev 2016.

Subscribe now

MEMBER LOGIN

Email address

Password

Log in

Don't have a subscription? Sign up. Forgot password?

Pricing

For a limited time, the annual subscription fee of €160 is reduced to €100. Sign up now to take advantage of this low introductory pricing. At the end of the 1-year period, renewal is at your discretion (no automatic renewal).

https://tumourclassification.iarc.who.int/welcome/

COMPARING 4TH AND 5TH EDITION CATEGORIES

GENERAL CLASSIFICATION GROUPS INCLUDE

- Adipocytic Tumors 15 distinct histologic types
- Fibroblastic and Myofibroblastic Tumors 25 distinct histologic types
- So-Called Fibrohistiocytic Tumors 4 distinct histologic types
- Vascular Tumors 15 distinct histologic types
- Pericytic (perivascularo) Tumors 3 distinct histologic types
- Smooth Muscle Tumors 4 distinct histologic types
- Skeletal Muscle Tumors 6 distinct histologic types
- Gastrointestinal Stromal Tumor 4 distinct histologic types <u>ALL NOW REPORABLE for 2021+</u>
- Peripheral Nerve Sheath Tumors 11 distinct histologic types
- Tumors of Uncertain Differentiation 21 distinct histologic types
- Undifferentiated Small Round Cell Sarcomas of Bone and Soft Tissue 4 distinct histologic types

COMPARING WHO SARCOMA CATEGORIES 2013 VS 2020

2013 Classification - WHO 4th edition	2020 Classification - WHO 5th edition
Angiosarcoma	Adipocytic Tumors
Kaposi Sarcoma	Fibroblastic and Myofibroblastic Tumors
Fibrous Tumors	So-Called Fibbrohistiocytic Tumors
Soft Tissue Tumors	Vascular Tumors
Fatty Tumors (Lipomatous)	Pericytic (perivascular) Tumors
Chondroid Tumors (Bone and Cartilage)	Smooth Muscle Tumors
Peripheral Nerve Sheath Tumors	Skeletal Muscle Tumors
Rhabdomyosarcoma	Gastrointestinal Stromal Tumor
Schwannoma	Peripheral Nerve Sheath Tumors
Spindle Cell Tumors	Tumors of Uncertain Differentiation
	Undifferentiated Small Round Cell Sarcomas
Myoribroblastic rumors	of Bone and Soft Tissue
Fibromyxoid Tumors	
Hemangioma	
Lymphangioma	
Epithelioid Sarcoma	
Extraskeletal Chroncdrosarcoma	
Mixed Tumors	

2020 WHO CLASSIFICATION – 5^{TH} EDITION

- Adipocytic tumours
 - Lipoma
 - Lipomatosis
 - Lipomatosis of nerve
 - Lipoblastoma and lipoblastomatosis
 - Angiolipoma
 - Myolipoma of soft tissue
 - Chondroid lipoma
 - Spindle cell lipoma and pleomorphic lipoma
 - Hibernoma
 - Atypical spindle cell / pleomorphic lipomatous tumour
 - Atypical lipomatous tumour / well-differentiated liposarcoma
 - Dedifferentiated liposarcoma
 - Myxoid liposarcoma
 - Pleomorphic liposarcoma
 - Myxoid pleomorphic liposarcoma

Adipocytic tumors are the most common mesenchymal **neoplasms**, liposarcoma accounting for approximately 20% of soft tissue sarcomas. The differential diagnosis between benign and malignant **tumors** is often problematic and represents a significant proportion of consultation cases.

ADIPOCYTIC TUMOURS

Benign

- Lipoma
- Lipomatosis
- Lipomatosis of nerve
- Lipoblastoma/Lipoblastomatosis
- Angiolipoma
- Myolipoma
- Chondroid lipoma
- Spindle cell/Pleomorphic lipoma
- Hibernoma

Intermediate (locally aggressive)

Atypical lipomatous tumour/ Well differentiated liposarcoma

Malignant

- Dedifferentiated liposarcoma Myxoid liposarcoma Pleomorphic liposarcoma Liposarcoma-NOS
- Round cell liposarcoma Mixed-type liposarcoma

is

Fibroblastic and Myofibroblastic Tumours

 Nodular fasciitis 	· Acral fibromyxoma
 Proliferative fasciitis and proliferative 	
myositis	· Gardner fibroma
 Myositis ossificans and fibro-osseous 	
pseudotumour of digits	 Palmar fibromatosis and plantar fibromatos
· Ischaemic fasciitis	 Desmoid fibromatosis
· Elastofibroma	· Lipofibromatosis
 Fibrous hamartoma of infancy 	 Giant cell fibroblastoma
· Fibromatosis colli	· Dermatofibrosarcoma protuberans
· Juvenile hyaline fibromatosis	 Solitary fibrous tumour
 Inclusion body fibromatosis 	 Inflammatory myofibroblastic tumour
 Fibroma of tendon sheath 	 Low-grade myofibroblastic sarcoma
 Desmoplastic fibroblastoma 	 Superficial CD34-positive fibroblastic tumot
· Myofibroblastoma	 Myxoinflammatory fibroblastic sarcoma
\cdot Calcifying aponeurotic fibroma	 Infantile fibrosarcoma
 EWSR1-SMAD3-positive fibroblastic 	
tumour (emerging)	 Adult fibrosarcoma
 Angiomyofibroblastoma 	· Myxofibrosarcoma
· Cellular angiofibroma	 Low-grade fibromyxoid sarcoma
 Angiofibroma of soft tissue 	 Sclerosing epithelioid fibrosarcoma
 Nuchal-type fibroma 	

Fibroblastic/myofibroblastic tumors are divided into 4 main groups: benign, intermediate (locally aggressive), intermediate (rarely metastasizing), and malignant.

Many fibroblastic/myofibroblastic lesions are moderately or highly cellular and show mitotic activity; thus, they can be easily mistaken for sarcoma.

2020 WHO CLASSIFICATION – 5^{TH} EDITION

Vascular tumours

- Haemangiomas
- Synovial haemangioma
- · Intramuscular angioma
- Arteriovenous malformation/haemangioma
- Venous haemangioma
- Anastomosing haemangioma
- Epithelioid haemangioma
- Lymphangioma and lymphangiomatosis
- Tufted angioma and kaposiform haemangioendothelioma
- Retiform haemangioendothelioma
- Papillary intralymphatic angioendothelioma
- Composite haemangioendothelioma
- Kaposi sarcoma
- · Pseudomyogenic haemangioendothelioma
- · Epithelioid haemangioendothelioma
- Angiosarcoma

Pericytic (perivascular) tumours

- · Glomus tumour
- Myopericytoma, including myofibroma
- Angioleiomyoma

Smooth muscle tumours

- · Leiomyoma
- · EBV-associated smooth muscle tumour
- Inflammatory leiomyosarcoma
- · Leiomyosarcoma

Skeletal muscle tumours

- · Rhabdomyoma
- · Embryonal rhabdomyosarcoma
- Alveolar rhabdomyosarcoma
- Pleomorphic rhabdomyosarcoma
- Spindle cell / sclerosing rhabdomyosarcoma
 Ectomesenchymoma

Smooth muscle tumors occur infrequently in the skin. They consist of a diverse group of lesions representing hamartomas as well as benign and malignant **neoplasms**. They may arise from arrector pili **muscle**, specialized **smooth muscle** of the genitalia, or vascular **smooth muscle**.

A vascular tumor is a tumor of vascular origin; a soft tissue growth that can be either benign or malignant, formed from blood vessels or lymph vessels.

Three major types of muscle tumours are leiomyomas, rhabdomyomas, and **rhabdomyosarcomas**.

Undifferentiated small round cell sarcomas of bone and soft tissue

- Ewing sarcoma
- Round cell sarcoma with EWSR1-non-ETS fusions
- CIC-rearranged sarcoma
- Sarcoma with BCOR genetic alterations

Peripheral nerve sheath tumours

- · Schwannoma
- · Neurofibroma
- · Perineurioma
- · Granular cell tumour
- · Dermal nerve sheath myxoma
- Solitary circumscribed neuroma
- Ectopic meningioma and meningothelial hamartoma
- Benign triton tumour / neuromuscular choristoma
- Hybrid nerve sheath tumour
- Malignant peripheral nerve sheath tumour
- · Malignant melanotic nerve sheath tumour

Tumours of uncertain differentiation

- Intramuscular myxoma
- · Juxta-articular myxoma
- Deep (aggressive) angiomyxoma
- Atypical fibroxanthoma
- Angiomatoid fibrous histiocytoma
- · Ossifying fibromyxoid tumour
- Myoepithelioma, myoepithelial carcinoma, and mix
- Pleomorphic hyalinizing angiectatic tumour of soft
- Haemosiderotic fibrolipomatous tumour
- Phosphaturic mesenchymal tumour
- NTRK-rearranged spindle cell neoplasm (emerging)

- Synovial sarcoma
- Epithelioid sarcoma
- Alveolar soft part sarcoma
- Clear cell sarcoma of soft tissue
- · Extraskeletal myxoid chondrosarcoma
- · Desmoplastic small round cell tumour
- · Extrarenal rhabdoid tumour
- PEComa, including angiomyolipoma
- Intimal sarcoma
- Undifferentiated sarcoma

SARCOMA RULES DO NOT EXIST OR ARE LIMITED

- THE ONLY SARCOMA 'RULES' OR 'INSTRUCTIONS' AVAILABLE ARE FOR STAGING
- THE PRIMARY SITE CODING RULES FOR SARCOMA ARE ANCIENT
- THERE ARE NO SOLID TUMOR MULTIPLE PRIMARY RULES FOR SARCOMA
- THERE ARE NO HISTOLOGY CODING RULES FOR SARCOMA
- THERE ARE SCHEMA-SPECIFIC GRADE RULES FOR SARCOMA

THERE ARE ONLY 3 SITE SPECIFIC DATA ITEMS IN ALL SARCOMA SCHEMA

TUMOR GRADE AND OTHER PROGNOSTIC FACTORS

Fédération Nationales des Centres de Lutte Contre le cancer; High Power Field

Tumor differentiation	Definition
Score 1	Sarcomas that closely resemble normal adult mesenchymal tissues
Score 2	Sarcomas for which histologic typing is certain
Score 3	Embryonal and undifferentiated sarcomas, synovial sarcoma and sarcomas of uncertain differentiation
Mitotic count	
Score 1	0-9 mitosis/ 10 hpf
Score 2	10-19 mitosis/ 10 hpf
Score 3	20≥ mitosis/ 10 hpf
Tumor necrosis	
Score 0	No necrosis
Score 1	<50% tumor necrosis
Score 2	≥50% tumor necrosis
Histologic grade	Tumor differentiation + mitotic count + tumor necrosis
Grade 1 (Low grade)	Total score: 2 or 3
Grade 2 (Intermediate grade)	Total score: 4 or 5
Grade 3 (High grade)	<50% tumor necrosis

https://www.sciencedirect.com/science/article/abs/pii/S0972978X18302587

CODING THE PRIMARY SITE FOR SARCOMA CASES

- When a Sarcoma involves/originates in a solid organ such as stomach or lung or breast code the solid organ as the primary site, regardless of sarcoma type.
- Even when you know the sarcoma is of blood vessel or fat cell or fibrous tissue origin code the solid organ
- When you cannot identify a solid organ of origin then you look at histology and anatomic location.
- When a Sarcoma involves a bone code the bone and laterality if applicable (C40.0-C41.9)
- When a Sarcoma involves cartilage code the bone cartilage and laterality if applicable (C40.0-C41.9)
- When a Sarcoma involves soft tissue code the area of soft tissue in the C49.0-C49.9 series
- When a Sarcoma involves muscle code the area of the muscle in the C49.0-C49.9 series
- When a Sarcoma involves the uterus code to myometrium not endometrium or uterus, NOS
- When a Sarcoma involves the lung be sure this is not lung metastasis with multiple nodules
- When a Sarcoma involves the meninges code to meninges C70.0 (NOT C70.9)
- Most Sarcoma of Skin Sites are actually Subcutaneous Soft Tissue use the site/histology validation list
- Rarely some sarcoma are coded to skin such as Kaposi Sarcoma use the site/histology validation list

34

• Unknown Primary Sarcoma is rare but does occur – code primary site to C80.9 in these rare cases

CODING THE PRIMARY SITE FOR SARCOMA CASES

Figure 3. The distribution of nonrhabdomyosarcomatous soft tissue sarcomas by age according to tumor site.

https://www.ncbi.nlm.nih.gov/books/NBK65923/

35

BIOLOGICAL POTENTIAL DESCRIBED SPECIFICALLY

- <u>Benign</u> Most benign soft tissue tumours do not recur locally. Those that do recur do so in a non-destructive fashion and are almost always readily cured by complete local excision.
- Intermediate (locally aggressive) Soft tissue tumours in this category often recur locally and may be associated with an infiltrative and locally destructive growth pattern. Lesions in this category very rarely if ever metastasize but typically require wide excision with a margin of normal tissue in order to ensure local control.
- Intermediate (rarely metastasizing) Soft tissue tumours in this category are often locally aggressive (see above) but, in addition, show the well-documented ability to give rise to distant metastases in occasional cases. The risk of such metastases appears to be < 2% and is not reliably predictable on the basis of histomorphology. Metastasis in such lesions is usually to lymph node or lung.
- <u>Malignant</u> In addition to the potential for locally destructive growth and recurrence, malignant soft tissue tumours known as soft tissue sarcomas) have a substantial risk of distant metastasis, ranging in most instances from 20% to almost 100%, depending on histological type and grade. Some (but not all) histologically low-grade sarcomas have a metastatic risk of only 2–10%, but such lesions may advance in grade in a local recurrence and thereby acquire a higher risk of distant spread (e.g. myxofibrosarcoma and leiomyosarcoma).
- **IMPORTANT NOTE**: the intermediate categories do not correspond to histologically determined intermediate grade in a soft tissue sarcoma (see below), nor do they correspond to the ICD-O /1 behaviour category described as uncertain whether benign or malignant. The locally aggressive subset of entities with no metastatic potential, as defined above, are generally given ICD-O /1 codes, and the rarely metastasizing lesions are given ICD-O /3 codes 36

MOLECULAR GENETICS AND TUMOR MARKERS

- Tumor Markers and Molecular Genetics are used for:
 - Diagnose, stage, and/or classify cancer
 - Estimate prognosis
 - Select an appropriate treatment (eg, treatment with a targeted therapy)
 - Assess response to treatment
 - Detect residual cancer after treatment
 - Monitor whether cancer has become treatment resistant
 - Detect recurrence or progression after treatment

MOLECULAR GENETICS AND TUMOR MARKERS

- There are very few Tumor Markers or Molecular Genetic Mutations or Tests Available for Sarcoma
- Sarcomas with simple/single genome may be identified with specific molecular marker(s)
- However, sarcomas with complex genome show multiple, non-recurrent molecular alterations
- There are more than 80 sarcoma types/subtypes making markers and genetic testing difficult for sarcoma

Recurrent rearrangements	Fusion oncogenes	Sarcoma-type specific (reviewed by Mertens) ⁴	Diagnostic / Prognostic
	KIT / PDGFRA, SDHA / B	GIST	Predictive / Diagnostic
	CTNNB1	Desmoid tumor	Diagnostic
	IDH1, IDH2	Enchodroma / chondrosarcoma	Diagnostic
	SUZ12, EED	Malignant peripheral nerve sheath tumor	Diagnostic
Deint mototione en month in dele	PIK3CA	Myxoid liposarcoma	Predictive
Point mutations or small indels	KDR	Angiosarcoma	Diagnostic
	NRAS, KRAS, HRAS, FGFR4	Embryonal rhabdomyosarcoma	Diagnostic / Predictive
	MYOD1	Spindle cell rhabdomyosarcoma	Diagnostic
	MED12	Leiomyoma (and small subset of leiomyosarcoma)	Diagnostic
	NFI	MPNST and others	Diagnostic
Copy number gain / Amplification	MDM2, CDK4	WD/DDLPS	Diagnostic
	CDK4		Predictive
	MYC	Postradiation sarcoma	Diagnostic
	MYOCD	Leiomyosarcoma	Diagnostic
	TP53	Osteosarcoma, leiomyosarcoma, and others	Prognostic
	SMARCB1	Rhabdoid tumor, epithelioid sarcoma	Diagnostic
Copy number loss / Deletion	SMARCA4	SMARCA4-deficient thoracic sarcomas	Diagnostic
	CDKN2A	MPNST, fibrosarcomatous DFSP, advanced GIST	Predictive
	RB1	Spindle cell lipoma, and others	Diagnostic
		High-grade sarcomas with complex karyotype	Predictive
	NF1	MPNST and others	Diagnostic / Predictive

Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma

Tumors with Simple Genome Include:

- Ewing Sarcoma
- GIST
- Undifferentiated Pleomorphic Sarcoma
- Osteosarcoma

However, as these tumors mature, additional point mutations may occur with potential for great variability in genomically-complex sarcomas – these suggest tumor progression ³⁸

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988391/

MOLECULAR GENETICS AND TUMOR MARKERS

Table 2. Selected Sarcomas With Distinct Cytogenetic and Molecular Alterations of Diagnostic Relevance				
Sarcoma Type	Cytogenetic Alteration	Molecular Alteration		
Alveolar rhabdomyosarcoma	t(2;13)(q35;q14) t(1;13)(p36;q14), double minutes t(2;2)(q35;p23) t(X;2)(q35;q13)	PAX3-FOXO1 fusion PAX7-FOXO1 fusion PAX3-NCOA1 fusion PAX3-AFX fusion		
Alveolar soft part sarcoma	t(X;17)(p11.2;q25)	TFE3-ASPSCR1 fusion		
BCOR-rearranged sarcoma	Inv(X)(p11p11) ? ?	BCOR-CCNB3 fusion BCOR-MAML3 fusion ZC3H7B-BCOR fusion		
CIC-rearranged sarcoma	t(4;19)(q35;q13) or t(10;19)(q26;q13) t(X;19)(q13;q13.3)	CIC-DUX4 fusion CIC-FOXO4 fusion		
Clear cell sarcoma	t(12;22)(q13;q12) t(2;22)(q32.3;q12)	EWSR1-ATF1 fusion CREB1-EWSR1 fusion		
Dedifferentiated liposarcoma	Ring and giant marker chromosomes	Amplification of 12q13-15: MDM2, CDK4, HMGA2		
Desmoplastic small round cell tumor	t(11;22)(p13;q12)	EWSR1-WT1 fusion		
DFSP	Ring form of chromosomes 17 and 22	COL1A1-PDGFB fusion		
Endometrial stromal sarcoma, low grade	t(7;17)(p15;q21) t(6;7)(p21;7p15) t(6;10)(p21;p11)	PHF1-JAZF1 fusion EPC1-PHF1 fusion		
	t(1;6)(p34;p21) t(X;17)(p11;q21)	MEAF6-PHF1 fusion MBTD1-CXorf67 fusion		
Endometrial stromal sarcoma, high grade	t(10;17)(q22;p13) t(X;22)(p11;q13)	YWHAE-NUTM2 fusion ZC3H7B-BCOR fusion		
Epithelioid hemangioendothelioma	t(1;3)(p36;q25) t(X;11)(p11;q22)	WWTR1-CAMTA1 fusion YAP1-TFE3 fusion		
Epithelioid sarcoma	Deletion 22q t(8;22)(q22;q11) t(10;22)	SMARCB1 inactivation		
Ewing sarcoma	t(11;22)(q24;q12) t(21;22)(q12;q12) Others	EWSR1-FLI1 fusion EWSR1-ERG fusion Others		
Extraskeletal myxoid chondrosarcoma	t(9;22)(q22;q12) t(9;17)(q22;q11) t(9;15)(q22;q21) t(3;9)(q11;q22) t(9;17)(q22;q11)	EWSR1-NR4A3 fusion TAF2N-NR4A3 fusion TCF12-NR4A3 fusion TFG-NR4A3 fusion RBP56-NR4A3 fusion		
GIST	Deletion 14q, 22q, 1p, 15q	KIT or PDGFRA mutation (85% of cases); NF1, SDHX, BRAF mutation, SDHC hypermethylation, other		
Inflammatory myofibroblastic tumor	t(1;2)(q22;p23) t(2;19)(p23;p13) t(2;17)(p23;q23)	TPM3-ALK fusion TPM4-ALK fusion CLTC-ALK fusion		

https://ascopubs.org/doi/pdf/10.1200/JCO.2017.74.9374

SEER Summary Stage 2000 – Uses Basic Concepts of Local, Regional Direct Extension, Regional Nodes, Combined Extension and Nodes and Distant Disease – nodes are rarely involved limiting Summary Stage to Local, Regional Direct, or Distant

- Bone
- Gastro-Intestinal Stromal Tumors (GIST)
- Heart, Mediastinum and Pleura
- Retroperitoneum
- Soft Tissues
- AJCC Chapters for Sarcoma stated not to be used for pediatric sarcoma (but, they still are in many cases)
 - Bone
 - Gastro-Intestinal Stromal Tumors (GIST)
 - Orbital Sarcoma
 - Soft Tissue Sarcoma Unusual Histologies and Sites
 - Soft Tissue Sarcoma Abdomen and Thoracic Visceral Organs
 - Soft Tissue Sarcoma Head & Neck
 - Soft Tissue Sarcoma Retroperitoneum
 - Soft Tissue Sarcoma Trunk and Extremities

- Basis for <u>BOTH</u> AJCC AND SEER Summary Stage Rests on <u>Very Simple Criteria</u>
 - Tumor Location
 - Tumor Size
 - Tumor Extension to Adjoining Structures
 - Tumor with Invasion into Specific Adjoining Structures
 - Presence or Absence of Positive Regional Lymph Node(s) rare
 - Presence or Absence of Distant Metastasis (usually lung, bone, or liver)
 - Tumor Grade and/or Mitotic Rate or Score (low mitosis/high mitosis)
 - Tumor Necrosis
 - Histologic Grade
- The hope is to eventually develop Risk Stratification Scoring Models based on above to guide and manage treatment, recurrence, progression, and new therapies. 41

- SEER Summary Staging Manual 2020 GUIDELINES BY STAGE page 10-20 of manua
 - Provides the general descriptions for each general stage
 - Localized
 - Regional by Direct Extension
 - Regional Lymph Nodes Only
 - Regional by BOTH Direct Extension and Regional Lymph Node Involved
 - Distant (Disseminated)
 - Benign/Borderline
 - Unknown/Unstaged
 - There is no such thing as an in-situ sarcoma.

Figure 1. The distribution of nonrhabdomyosarcomatous soft tissue sarcomas by age according to stage.

https://www.ncbi.nlm.nih.gov/books/NBK65923/

SOFT TISSUE AND CONNECTIVE TISSUE

- Soft Tissue Sarcomas is a broad group of many types of sarcoma that can develop in soft tissues like fat, muscle, nerves, fibrous tissues, blood vessels, or deep skin tissues. They can be found in any part of the body. Most of them start in the arms or legs. They can also be found in the trunk, head and neck area, internal organs, and the area in back of the abdominal cavity or retroperitoneum.
 - Adult Fibrosarcoma
 - Alveolar Soft-Part Sarcoma
 - Angiosarcoma [hemantgiosarcoma (blood vessel) or lymphangiosarcoma (lymph vessel)]
 - Clear Cell Sarcoma
 - Desmoplastic Small Round Cell Tumor
 - Epithelioid Sarcoma
 - Fibromyxoid Sarcoma, low grade
 - Kaposi Sarcoma (HHV8)
 - Leiomyosarcoma
 - Liposarcoma
 - Malignant Mesenchymoma
 - Malignant Peripheral Nerve Sheath Tumors (neurofibrosarcoma, malignant schwannoma, neurogenic sarcoma)
 - Myxofibrosarcoma, low-grade
 - Rhabdomyosarcoma
 - Synovial Sarcoma
 - Undifferentiated Pleomorphic Sarcoma

C49.0-C49.9 includes smooth muscle and skeletal muscle, connective and soft tissues, tendons, nerves, fat, fibrous tissue, subcutaneous, skin, etc.

LONG AND SHORT BONES AND CARTILAGE

- Benign tumors are more common in the cartilage than malignant ones. These are called enchondromas.
- Another type of benign cartilage tumor is a bony projection of cartilage called an osteochondroma.
- Osteosarcoma (also called osteogenic sarcoma) is the most common primary bone cancer. It starts in the bone cells. It
 most often occurs in young people between the ages of 10 and 30, but about 10% of osteosarcoma cases develop in
 people in their 60s and 70s. It's rare in middle-aged people, and is more common in males than females. These tumors
 develop most often in bones of the arms, legs, or pelvis.
- <u>Chondrosarcoma starts in cartilage cells</u>. It's the second most common primary bone cancer. It's rare in people younger than 20. After age 20, the risk of getting a chondrosarcoma goes up until about age 75. Chondrosarcomas can start anywhere there's cartilage. Most develop in bones like the pelvis, legs, or arms. Sometimes chondrosarcoma starts in the trachea, larynx, or chest wall. Other sites are the scapula (shoulder blade), ribs, or skull. Subtypes include Clear Cell Chondrosarcoma, Mesenchymal Chondrosarcoma, and De-Differentiated Chrondrosarcoma the last two are usually high grade tumors.</u>
- Ewing Tumor is the third most common primary bone cancer, and the second most common in children, teens, and young adults. It's rare in adults older than 30. This cancer (also called Ewing sarcoma) is named after Dr. James Ewing, who first described it in 1921. Most Ewing tumors develop in bones, but they can start in other tissues and organs. The most common sites for this cancer are the pelvis, the chest wall, and the long bones of the legs or arms.
- Ewing tumors occur most often in white people and are very rare among African Americans and Asian Americans.
- Malignant fibrous histiocytoma (MFH) most often starts in soft tissue (connective tissues such as ligaments, tendons, fat, and muscle); it's rare in bones. This cancer is also known as pleomorphic undifferentiated sarcoma, especially when it starts in soft tissues. When MFH occurs in bones, it usually affects the legs (often around the knees) or arms. This cancer most often occurs in elderly and middle-aged adults.

MUSCLE (INCLUDES SKELETAL MUSCLE & FASCIA)

Most Sarcoma of Muscle are Described in the General Section Soft Tissue/Connective Tissue

- <u>Rhabdomyosarcoma</u> (RMS) is a type of sarcoma made up of cells that normally develop into skeletal (voluntary) muscles. These are muscles that we control to move parts of our body. Well before birth, cells called rhabdomyoblasts (which will eventually form skeletal muscles) begin to form. These are the cells that can develop into RMS. Because this is a cancer of very early forms of muscle cells, it is much more common in children, although it does sometimes occur in adults.
- <u>Embryonal rhabdomyosarcoma (ERMS)</u> is one subtype of rhabdomyosarcoma that usually affects children in their first 5 years of life, but it can occur at older ages as well. ERMS tends to occur in the head and neck area, bladder, vagina, or in or around the prostate and testicles.
 - There are 2 subtypes of ERMS, botryoid and spindle cell rhabdomyosarcomas which tend to have a better outcome
- The second subtype of rhabdomyosarcoma is **alveolar rhabdomyosarcoma** or ARMS
- ARMS typically affects all age groups equally. It makes up a larger portion of RMS in older children, teens, and adults than in younger children. ARMS most often occurs in large muscles of the trunk, arms, and legs.
- ARMS tends to grow faster than ERMS, and it usually requires more intense treatment.
- <u>Anaplastic rhabdomyosarcoma or pleomorphic rhabdomyosarcoma</u> and <u>undifferentiated sarcoma</u> are more rare cancers however, they are <u>both high grade and require intensive treatment</u>.

GYNECOLOGICAL SARCOMA

- <u>Coding Primary Site for GYN Sarcoma</u> can be tricky <u>some originate in endometrium</u>, some in myometrium.
- Cancers that start in epithelial cells, the cells that line or cover most organs, are called carcinomas of endometrium.
- More than 95% of uterine cancers are carcinomas.
- Sarcomas start from tissues like muscle, fat, bone, and fibrous tissue (tendons and ligaments) may be either.
- Most uterine sarcomas are put into categories, based on the type of cell they start in:
- But, one type of <u>mixed sarcoma of the GYN that starts in the uterus</u> is called <u>carcinosarcoma</u>. These cancers start in the endometrium and have features of both sarcomas and carcinomas. These cancers are also known as malignant <u>mixed mesodermal tumors or malignant mixed mullerian tumors</u>. The primary site is Endometrium not Myometrium.
- The Two Types of Uterine Sarcoma that originate in myometrium or connective tissue (stroma) are:
 - <u>Uterine Leiomyosarcoma</u> starts in muscular wall of uterus most common type grow and spread quickly
 - Endometrial Stromal Sarcoma starts in stroma of the lining of the uterus (endometrium) more rare and often low-grade. However, may be high-grade if it is large, growing quickly or has spread and hard to treat

47

Undifferentiated Sarcoma may start in either endometrium or myometrium and have poor prognosis

GIST AND OTHER STROMAL TUMORS

- <u>Gastrointestinal stromal tumors (GISTs) start in very early forms of special cells in the wall of the GI tract called the interstitial cells of Cajal</u> (ICCs). ICCs are sometimes called the "pacemakers" of the GI tract because <u>they signal the muscles in the GI tract to contract to move food and liquid along.</u>
- More than half of GISTs start in the stomach. Most of the others start in the small intestine, but GISTs can start anywhere along the GI tract. A small number of GISTs start outside the GI tract in nearby areas such as the omentum or the peritoneum.
- GIST is likely to grow and spread quickly, such as:
 - The size of the tumor
 - Where it's located in the GI tract
 - How fast the tumor cells are dividing (its mitotic rate)
- ALL GIST ARE REPORTABLE STARTING 1/1/2021 regardless of the specified criteria now outdated.
- Other more rare types of cancer in the GI tract include different types of soft tissue sarcomas such as:
 - Leiomyosarcomas: cancers of smooth muscle cells
 - Angiosarcomas: cancers of blood vessel cells
 - Malignant peripheral nerve sheath tumors (MPNSTs): cancers of cells that support and protect nerves

TREATMENT OPTIONS

- Surgery (including Limb Salvage and Reconstruction)
- Radiation (Cause and Cure)
- Chemotherapy (Limited Agents)
- Anti-Angiogenesis Agents block new blood vessel formation
- Immunotherapy (Experimental promising)
- Targeted Therapy (Experimental promising)
- Combination Therapy (Surgery and Various Types of Radiation)
- Other Therapy (May add Chemo, Immuno or Experimental for Advanced Disease
- Other Therapy (May add Chemo, Immuno or Experimental for Recurrence/Progression

SURGERY OF PRIMARY SITE, LIMB SALVAGE & RECONSTRUCTION

Who Has Surgery

- Surgery works best for solid tumors that are contained in one area. It is a local treatment.
- Sometimes surgery will be the only treatment you need. But most often, you will also have other cancer treatments. The usual treatment following surgery for sarcoma is radiation therapy as initial course of tx.
- <u>Remove the entire tumor</u>
 - Surgery removes cancer that is contained in one area.
- <u>Debulk a tumor</u>

٠

- Surgery removes some, but not all, of a cancer tumor. Debulking is used when removing an entire tumor might damage an organ or the body. Removing part of a tumor can help other treatments work better.
- Ease cancer symptoms
 - Surgery is used to remove tumors that are causing pain or pressure.

Limb Salvage with Reconstruction are procedures that are an <u>alternative to amputation</u>. Limb salvage procedures replace a diseased bone and reconstructs a functional limb by using a metal implant, a bone graft from another person (allograft), or a combination bone graft and metal implant (allo-prosthetic composite) to spare the patient's limb and provide functional limb support where amputation may be the only other surgical option. These procedures are only performed for long-bones such as leg or arm. They allow for a more functional outcome and improved qualify of life in sarcoma patients.

RADIATION THERAPY

Dose distribution comparison between a conventional radiation plan (Figure A) and a proton therapy plan (Figure B) in a patient with an abdominal sarcoma (*). Note the difference in dose to the kidneys (K).

https://www.floridaproton.org/cancers-treated/sarcoma/sarcoma-treatment

SYSTEMIC THERAPIES CHEMOTHERAPY AND TARGETED THERAPIES

Soft Tissue Sarcoma – FDA Approved Agents

- Cosmegen (Dactinomycin)
- Dactinomycin
- Doxorubicin Hydrochloride
- Eribulin Mesylate
- Gleevec (Imatinib Mesylate)
- Halaven (Eribulin Mesylate)
- Imatinib Mesylate
- Pazopanib Hydrochloride
- Tazemetostat Hydrobromide
- Tazverik (Tazemetostat Hydrobromide)
- Trabectedin
- Votrient (Pazopanib Hydrochloride)
- Yondelis (Trabectedin)
- Drug Combinations (VAC)

Bone Cancer Agents – not just Sarcoma

- Cosmegen (Dactinomycin)
- Dactinomycin
- Denosumab
- Doxorubicin Hydrochloride
- Methotrexate
- Trexall (Methotrexate)
- Xgeva (Denosumab)

Three New Agents for Sarcoma FDA Approved in 2016 & 2020

- Lartruvo (olaratumab) with doxorubicin for soft tissue tumors. Lartruvo is a platelet-derived growth factor (PDGF) receptoralpha blocking antibody.
- Avapritinib (Ayvakit) GIST PDGFRA/D842V mutations
- Tazemetostat (Tazverik) epithelioid sarcoma only agent available for this type of sarcoma which represents <1% sarcoma
- New agents are slow to market for sarcoma of any type these 3 brand new agents are the first new breakthrough agents including immunotherapies in many years for ANY sarcoma.

RECURRENCE AND PROGRESSION OF DISEASE

- For all sarcoma patients, local tumor control ranges from 30% to 100%, but that data represents a broad spectrum of sarcoma subtypes and treatments.
- Certain tumors that are high grade, large, and/or located deep under the skin are associated with the highest risk for recurrence.
- Also, compared to younger individuals (i.e., those <55-60 years old), tumors in older patients tend to relapse more often.

https://www.floridaproton.org/cancers-treated/sarcoma/sarcoma-treatment

CEU QUIZ IS ACTIVATED NOW

FCDS IDEA APPLICATION ANNOUNCEMENT

Florida Statewide Cancer Registry Florida Cancer Data System

The FCDS will be transitioning FCDS IDEA to a new application on November 2, 2020.

This transition is necessary to keep IDEA running properly. The current FCDS IDEA browser version will not work as of December 7, 2020. Please take the month of November to install the new application. If you have not installed the new application by December 6, 2020, the current browser FCDS IDEA will direct you to download the new FCDS IDEA application.

The process is simple where you will download the application and automatically install it. An icon will be placed on your desktop for you to access FCDS IDEA. Installation instructions link below.

You need to install the new app on each computer you run FCDS IDEA.

Installation information: https://fcds.med.miami.edu/inc/tutorials.shtml

Installation problems? Contact: Mark Rudolph mrudolph@med.miami.edu

2021 STANDARDS – UPDATES, MANUALS, NEW ITEMS

1. 2021 Implementation of Reporting Requirements	h. Grade Field Conversions
a. Retire Flat File Format – will allow flat file submissions/data transmissions ur	l 6/30/2021 i. Stage Conversions
b. XML File Format – 7/1/2021 (tentative)/optional for submissions starting Ja	2021 j. SSDI Conversions
c. 2021 New Reportable Criteria – ALL GIST, ALL Thymoma, Evolving Melanoma	- k. 2021 Retired Data Items – TNM 6 & 7, Maiden Name
d. 2021 Not Reportable Criteria – Need to remove NIFTP, EFVPTC, EFVPTC and o	her histologies from thyroid I. 2021 FCDS DAM Revision – by March 31, 2021
e. Schema ID – changes to criteria and one new schema added	m. FCDSv21 EDITS Metafile – under review
f. 2021 New Data Items Required	n. FCDSv21 Updates to Abstractor Code Test & Review of Existing Q&A
i. Name-Birth Surname – Replaces Maiden Name	vhich will be Retired o. 2021 Grade Manual
ii. Medicare Beneficiary ID	p. 2021 SSDI Manual
iii. Grade Post Therapy Clinical (yc)	q. 2021 Heme Updates
iv. Gleason Pattern Clinical	r. 2021 Solid Tumors – 2 newly revised chapters and changes to all 8 other chapters
v. Gleason Pattern Pathological	s. 2021 ICD-O-3 Updates
vi. Gleason Score Clinical	t. 2021 STORE Manual
vii. Gleason Score Pathological	u. 2021 Site/Type Validation Table
viii. Gleason Tertiary Pattern	
g. Changed Data Items – LDH	
i. HER2 Overall Summary added to Esophagus and Sto	ach Schemas 00161, 00169, 00170
ii. Radiation Modality New Codes	
iii. Changes to SSDIs	
iv. FIGO Stage	
v. Grade – schema specific	

REFERENCES AND RESOURCES

- WHO Classification of Neoplasms of Soft Tissue and Bone, 5th edition, January 2020
- WHO Classification of Neoplasms of Soft Tissue and Bone, 4th edition, February 2013
- American Cancer Society Cancer Series
 - Bone Cancer
 - Ewing Tumors
 - Gastrointestinal Stromal Tumor
 - Osteosarcoma
 - Rhabdomyosarcoma
 - Soft Tissue Sarcoma
 - Uterine Sarcoma

Cancer.Net (ASCO) – Sarcoma, Soft Tissue – May 2019

REFERENCES AND RESOURCES

- Bone Tumor Staging Systems Dr Abdullah Ghafour and Dr Ali A Alwan
 - AJCC TNM, 8th edition 8 chapters
 - SEER Summary Stage 2000 4 chapters
 - Enneking Staging System soft tissue and bone 1 system
- CAP Protocols for Sarcoma
 - Primary Sarcoma of Uterus
 - Primary Tumors of Bone
 - Gastrointestinal Stromal Tumor (GIST)
 - Pediatric Ewing Sarcoma
 - Pediatric Rhabdomyosarcoma

REFERENCES AND RESOURCES

- NCCN Clinical Practice Guidelines
 - Bone Cancer version 1.2020
 - AIDS-Related Kaposi Sarcoma version 3.2020
 - Soft Tissue Sarcoma version 2.2020
 - Uterine Neoplasms
- FDA Drugs Approved for Soft Tissue Sarcoma October 2020
- FDA Announcement Accelerated Approval New Treatment for Advanced Soft Tissue Sarcoma 1/2019
- FDA Two New Soft Tissue Sarcoma Treatments Approved by the FDA January 28, 2020 K. Honey
- "Contemporary Sarcoma Diagnosis, Genetics, and Genomics" J Clin Oncol 36:101-110. © 2017 by American Society of Clinical Oncology
 - "Malignant Bone Tumor" Resection and Reconstruction– Orthopaedic Oncology Dr P. Agarwal 2019

QUESTIONS

